

Palm CLI Documentation

Palm — the extensible CLI at your fingertips!

Check Out Some Example Use Cases

Understanding The Palm Viewpoint: Why do my CLIs need a CLI?

What is Palm?

	A highly configurable, extensible, and flexible CLI framework for data
professionals.

	A layer of abstraction across your stack, to help with context shifting.

	A simple mechanism for sharing abstraction and automation across your
engineering teams.

	A tool for building and managing your own CLI commands.

	Built with python and click

Contents

	Usage
	System Requirements

	Installation

	Configuration

	Shell Completion

	High-level Features
	Run in docker

	Local commands

	Code generation

	Plugins

	Commands
	Where do commands come from?
	Overriding commands

	Excluding commands from your project

	Command Groups

	Writing your own commands
	Conventions

	Command Syntax

	Common patterns and important notes

	Code generation
	Basics
	Template config

	Gotchas

	New Projects with Cookiecutter
	Default cookiecutter templates

	Plugins
	Core plugins

	Installing Plugins

	Configuring Plugins

	Configuring Global Plugins

	Using plugin commands

	Keeping up to date

	Writing your own plugins

	Plugin config

	Containerization
	How to containerize your project

	How containerization works

	Implement your own containerization solution

	Branding
	Brand Assets
	Logos
	Standard Color Scheme

	Dark Color Scheme (transparent)

	White Color Scheme (transparent)

	Basic Use Guidelines

	Logo Usage

	Swag

	CONTRIBUTING
	Development environment

	Pre-commit

Usage

Check out the Usage section for further information, including how to
installation the project.

Note

This project is under active development.

Usage

Palm CLI is a command line tool, once installed you can use palm by running
palm from your terminal. If no command is provided, palm will render the
help text for commands in the current project

> palm
Usage: palm [OPTIONS] COMMAND [ARGS]...

Palm command line interface.

Options:
--version Show the version and exit.
--help Show this message and exit.

Commands:
build Rebuilds the image for the current working directory
docs Generates internal readthedocs for palm and serves them
plugin Palm plugin utilities
scaffold Scaffold new palm commands
update This updates the current version of palm.

System Requirements

Palm is designed to be OS agnostic and should work on Windows, Mac OS X, and
common Linux distributions.

Palm requires the following software to be installed and running on your
device:

	Docker [https://docs.docker.com/get-docker/]
You can check to see if you already have it with docker --version

	Python3 [https://www.python.org/downloads/]
You can check to see if you already have it with python3 --version

Installation

Install Palm CLI via pip:

pip install palm

For development installations, you may also install palm from source by cloning
the codebase and running python3 -m pip install .

To verify that the installation was successful, run palm --version.

note for mac users: if you get this warning:

WARNING: The script palm is installed in '/Users/yourname/Library/Python/3.8/bin' which is not on PATH.
Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.

you will need to add '/Users/yourname/Library/Python/3.8/bin' to your path for
palm to work. You can do that with one of these commands (depending on your
shell of choice):

	zsh: echo "\nexport PATH=$PATH:/Users/yourname/Library/Python/3.8/bin\n" >> ~/.zprofile

	bash: echo "export PATH=$PATH:/Users/yourname/Library/Python/3.8/bin" >> ~/.bashrc

	fsh: echo "setenv PATH $PATH:/Users/yourname/Library/Python/3.8/bin" >> ~/.fshrc

Configuration

To configure your project to use Palm, run palm init from the root
directory of your project.

This will walk you through setting up Palm for your project and create a /.palm
directory containing a config.yaml - this is where you can make changes to your
project’s Palm configuration.

Configuration Options:

	image_name: (str) the name of the docker image used to run your project

	plugins: (list) a list of plugins used by your project, plugins must be installed!

	protected_branches: (list) a list of github branches that palm will not run against

Global palm configuration

As of palm v2.2.0 palm also supports a global configuration file. This file is
automatically created at ~/.palm/config.yaml and contains the following options:

	plugins: (list) a list of plugins used globally, plugins must be installed!

	excluded_commands: (list) a list of palm commands that you do not want to use.

Shell Completion

To enable autocomplete for palm commands, add one of the following shell-specific
lines to your shell’s profile. Once added, either source your profile or start
a new shell session.

zsh:
eval "$(_PALM_COMPLETE=zsh_source palm)"

bash:
eval "$(_PALM_COMPLETE=bash_source palm)"

fish:
eval "$(_PALM_COMPLETE=fish_source palm)"

Adding shell completion to your commands

If you’d like to add/improve shell completion for your own commands, check out
the click documentation for shell-completion [https://click.palletsprojects.com/en/8.0.x/shell-completion/#custom-type-completion].

High-level Features

Run in docker

Palm and docker are like peas in a pod. Docker containers allow us to run our
commands in a sandboxed environment that is isolated from the rest of the system
and is a close reflection of our production and CI environments. Docker ensures
that everyone on your team is using a consistent OS and set of dependencies.
We’re not here to sell you on Docker, and we don’t expect you to be a Docker pro,
but you will need Docker in order to work with Palm.

Local commands

Palm allows you to define commands within each of your projects, and then share
them across your team. Once you have set up your project to use Palm, you can
create new commands in the .palm directory, add these to version control and
they will be available to everyone on your team when they run palm.

See the Commands section for more information.

Code generation

Palm includes code generation functionality, powered by jinja. Code generation
allows you to automate repetitive boiler plating tasks, and keep your codebase
consistent. Code generation is driven by the environment.generate() function.

See the Code generation section for more information.

Plugins

Palm is extensible. You can install plugins that extend the functionality of Palm.
Adding commands for specific frameworks or project types is a common use case.
Once installed, plugins must be configured for use with your project.

See the Plugins section for more information.

Commands

Commands are python scripts that are executed by Palm CLI. They allow you to run complex
tasks in a repeatable way, with a simple interface, and ensure everyone on your
team is working with the same tools.

Palm commands import the click [https://click.palletsprojects.com/en/8.0.x/]
CLI library, which is a core dependency of palm. Familiarity with the click library
is recommended for developing your own commands, many examples can be found in the
palm-cli repository.

Where do commands come from?

	Palm ships with some commands out-of-the-box that are always available. These are called
“core” commands. For example the palm build command is a core command.

	Palm plugins provide commands for working with specific tools. For example, the
palm-dbt plugin provides commands for working with dbt projects.

	You can create your own commands within your projects, these are called “repo”
commands, as they exist only within the project’s repository.

Overriding commands

With Palm, it is possible to override commands from other plugins. This is done
based on the order of the plugins in the .palm/config.yaml file, and the naming
of project plugins.

For example, if the palm-dbt plugin defined a command named build it would
override the core palm build command. This is because the commands from the
palm-dbt plugin are added after the core commands. If you installed a second
(ficticious) plugin called palm-builder which also defined a build command,
the order of overriding would be determined by the order of plugins in your project’s
.palm/config.yaml file. Finally, if you define a build command in your project,
as a repo command, it would override all other definitions of the build command.

Excluding commands from your project

Sometimes, you may want to exclude commands from your project. This is done by
adding the excluded_commands configuration to your project’s .palm/config.yaml.

Example:

Command Groups

Command groups are a useful structure for grouping commands together. For example,
if you have multiple commands relating to a single tool, you can group them together
within a command group. This allows you to easily see all the commands for a tool
when you run palm <tool name> --help.

Command groups are a construct provided by click - for more information, see the
click documentation on commands and groups [https://click.palletsprojects.com/en/8.0.x/commands/]

Writing your own commands

To simplify the process of writing your own commands and command groups,
Palm ships with some scaffolding commands. These commands will generate boilerplate
code for you, allowing you to focus on writing your command’s functionality.

	To scaffold a single command you can run
palm scaffold command --name <command-name>

	To scaffold a command group you can run
palm scaffold group --group <group-name> --command <command-name>

Once you have scaffolded your command or command group. You can edit the generated
file in your .palm directory, add the functionality you need and then run the command
immediately with palm <command-name>.

Conventions

	Command files are always named cmd_{name}.py

	A command _must_ expose a cli function. This function is called when the
command is executed.

Command Syntax

	The cli function should be decorated with either the @click.command
decorator or the @click.group decorator.

	The cli function can optionally be decorated with @click.pass_obj and
accept an environment argument, which is a click context object. The environment is a useful
Environment provided by palm that enables you to perform complex operations, like
running in docker containers, generating code, etc.

	For commands within a command group, each command _must_ be decorated with the
@cli.command decorator. Note that this is different from the @click.command
decorator, as the command belongs to the @click.group() which is always the
cli function.

Common patterns and important notes

Run in docker:

The global run_in_docker function is used to execute a command in the docker
container for the current project. This is used in many palm commands. This function
is provided via the palm context. If you want to use run_in_docker in your
own command, ensure you use the @click.pass_obj decorator for your command,
then use environment.run_in_docker(command).

Run on Host:

Palm provides a simple interface for running shell commands directly on your machine via
the context (similarly to how run_in_docker is accessed, via environment). We highly
recommend using run_on_host over rolling your own subprocess commands.

Warning

Why Not Use subprocess?

The prime directive of palm is to give all your developers an identical interface and
experience, regardless of environment. Different versions of python running on different
operating systems can behave differently when calling subprocess; palm normalizes this
behavior in `environment.run_on_host.

Importing code:

When writing “repo” commands in your project, you will not be able to use
conventional relative imports in your commands, as the command is executed in
the context of palm. If you need to share logic between commands, or import code
from your project, you must do this with the environment.import_module function.
This function is provided via the palm context and uses importlib to ensure
your shared code is imported from the correct location at run time.

Examples:

Maybe you want a command that kicks off a slow-building container
as a background process, but you want to see it complete before moving it back.
That could look something like this:

./palm/cmd_slow_starter.py
...
@click.command('slow_starter')
@click.pass_obj
def cli(environment):
 """Starts the container as daemon, watches the logs, then exits"""
 environment.run_on_host("docker compose run -d super_slow_starting_django_app",
 check=True)

 ## this is where we watch, pseudo-blocking
 building_logs = str()
 while "Starting local webserver via runserver on port 8080..." \
 not in building_logs:
 logs, _, _ = environment.run_on_host("docker compose logs static_app")
 if logs != building_logs:
 building_logs = logs
 click.echo(logs)
 click.secho("Super-slow app is _finally_ ready!", fg="green")

Code generation

Palm includes a set of code generation commands that allow you to generate code
for your project, automating repetitive boiler plating tasks, and making your
codebase more consistent.

Code generation in palm is powered by Jinja2 [https://jinja2docs.readthedocs.io/en/stable/]
and PyYAML [https://pyyaml.org/].

Basics

To use Palm code generation you will need:

	A directory of templates. We recommended you make a subdirectory within your
project’s .palm directory.

	A YAML configuration file called template-config.yaml - this is a
configuration file that describes how to generate code.

	A palm command which is decorated with the @click.pass_obj decorator and
calls environment.generate(template_path, output_path, replacements).

For full documentation of the generator see palm/code_generator.py in the Palm
CLI source code.

Template config

The template-config.yaml file is a fundamental piece of code generation with palm.
It describes the directory structure we want to create, and where each of our templates
will generate code.

The config file works on 2 top-level objects:
1. directories - a list of directories to create.
2. templates - a dict of templates to use, and where to use them. The key is the
name of the template, and the value is the path at which we want to create a file from it.

Each line of the template-config is parsed by jinja, which enables you to use replacements
in your config file.

Example template config

directories:
 - "{{model_name}}"
files:
 - base_model.sql: "{{model_name}}/{{model_name}}.sql"
 - base_model.yml: "{{model_name}}/{{model_name}}.yml"

The replacements dict allows this template-config to be used to create a directory
containing an appropriately named sql file and a yaml file.

Gotchas

Generating code is awesome, but there are gotchas to be aware of.

	Generating code that contains jinja is a pain, all jinja expressions must be
provided as replacements in the template, to prevent jinja from trying to
evaluate them during code generation.

New Projects with Cookiecutter

Palm includes a palm new command which uses cookiecutter [https://cookiecutter.readthedocs.io/en/1.7.2/]
to generate new projects. This is a great way to get started on a new project, and
is the recommended way to start a new project.

Default cookiecutter templates

Palm allows you to configure a set of default cookiecutter templates, which can be
used to generate new projects. To configure a default cookiecutter template, add
a default_cookiecutters dictionary to your global palm config file
(~/.pam/config.yaml). The key is a shorthand name for the template, and the value
is the cookiecutter template url. For example:

default_cookiecutters:
 dbt: 'https://github.com/datacoves/cookiecutter-dbt'

You can then use palm new -p dbt to generate a new dbt project using the
cookiecutter template.

Recommendation: Sharing a global set of default cookiecutter templates is a great
way to standardize your organization’s approach to new projects. We recommend you
share a set of default cookiecutter templates across your organization, and
document them in your organization’s documentation system.

Plugins

Palm plugins extend the functionality of the CLI. They usually add new commands
that are specific to a particular platform or framework. A plugin could also
share organization-specific functionality across multiple projects, or provide
a common base for a set of commands.

Core plugins

To simplify the CLI implementation, all Palm commands come from Plugins.
Within the Palm CLI repository, you will find a directory called “plugins” which
contains a set of plugins. The “core” and “repo” plugins are automatically loaded
when the CLI runs, these plugins provide the following functionality:

	core: Provides the core commands of Palm CLI.

	repo: Loads your custom commands from the .palm directory if available.

Note that the repo plugin does not provide any commands of its own, instead
it provides the mechanism to load your own project-specific commands.

Installing Plugins

Palm plugins are installed as pypi packages. To install a plugin, install
the pypi package for the plugin in the same python path as Palm CLI.

e.g.
pip install palm-dbt

Configuring Plugins

Once installed, you can configure your project to use a plugin by adding the
name of the plugin to the project’s .palm/config.yaml file. See the plugin’s
documentation for more information on how to configure each specific plugin.

Example plugin configuration

plugins:
 - dbt

Configuring Global Plugins

You can also configure plugins that are not specific to a project. This is
done by adding the name of the plugin to the ~/.palm/config.yaml file in
the user’s home directory. This global configuration file will be created the
first time palm is run.

Example global plugin configuration

plugins:
 - workflow
 - git

Using plugin commands

Once you have installed and configured a plugin, it’s commands should be available
for use within the project. To confirm this and to explore the available commands
run palm --help to list the available commands in your project.

Keeping up to date

As with all software, plugins are likely to change over time. To keep up to date,
palm provides some utility methods to check which version you are running and
update to the latest version if available.

	palm plugin versions to list all versions of configured plugins.

	palm plugin update --name <plugin_name> to update a specific plugin.

	palm plugin --help to see all plugin utility commands.

Writing your own plugins

So, you have a set of commands that you want to re-use across projects?
Or, maybe you have a set of commands you want to share with other people?
Writing a plugin is a great way to contribute to the Palm CLI ecosystem.

Check out the :doc:’write-a-plugin’ section to learn how to write your own plugin.

Plugin config

Some plugins require configuration to work. This configuration is stored in the
.palm/config.yaml file in the project directory. The configuration for each
plugin is stored under the plugin_config key at the root of the config file.

Example plugin config

plugin_config:
 dbt:
 prod_artifacts: path/to/artifacts/
 target: /path/to/target/

Plugin config is loaded into the plugin’s config attribute. Commands can
access this config by calling environment.plugin_config(plugin_name).

Containerization

Beta Feature
Note that this feature is intended to provide a basic baseline for containerization.
For more complicated projects, we recommend spending some time to implement your own
containerization solution. The code generated by Palm may serve as a good starting point.

Containerization (with Docker) is a pre-requisite for using Palm with your project.
We understand that you may not be a Docker pro, but we can help you get started with
dockerizing your project so that you can use Palm!

How to containerize your project

Palm ships with basic containerization for Python projects.

Before you start

	Make sure your project is initialized with palm init, the image_name
configuration will be used by the containerization tool.

	You should ensure you have a .env file in your project root directory. This file
should include the environment variables you need to run your project. It should
also be added to your .gitignore file.

	You need to be using requirements.txt or poetry.lock to manage your dependencies.
If you are using a different package management system, please open an issue on
Github and we will consider adding support for it.

Use palm containerize to set up your project with Docker.

See palm containerize --help for more information.

How containerization works

Palm containerization generates the following files in your project root directory:

	Dockerfile: The Dockerfile used to build your project

	docker-compose.yml: Docker compose is used to load the .env file and volume
mount your project code so that you can make changes without having to rebuild
or restart the container.

	scripts/entrypoint.sh: This script is used to run your project. It is executed
by the Dockerfile as it’s entrypoint. This is where your dependencies are
installed. Note: we do not recommend executing your project code directly in
the entrypoint as this limits the flexibility of your container, instead use
palm commands to run your project, this allows you to determine what each instance
of the container is doing (run, test, etc.).

Implement your own containerization solution

Palm containerization is intended to provide a basic baseline for containerization
for Python projects. For projects using a specific framework, or a different language,
we recommend that you implement your own containerization solution. To do this,
you will need to:

	Create a new containerizer command in your project
(palm scaffold command --name containerize).

	Duplicate the templates from palm/plugins/core/templates/containerize and
add them to your project. Make the necessary changes to support your
containerization needs.

	Subclass the Containerizer class and override the run() and
package_manager() methods.

	Open up cmd_containerize.py and implement any logic + Call YourSubclass.run()
in your command.

To see an example of custom containerization, see cmd_containerize.py in the
palm-dbt plugin!

Once you have implemented your containerization solution, consider releasing it
to the community as a palm plugin!

Branding

[image: ../_images/logo-subheader.png]

Brand Assets

	Logos

Palm is empowering and inclusive by design, enabling Developers and Engineers
With diverse skill sets to create and evolve software without homogeneous
programming know-how. With palm, contributors can focus on being experts in a
way that generates the most value, and skip “sweating the small stuff” of rote
interface memorization.
We are proud of what palm is and what it represents. These branding guidelines
and associated assets are part of that representation and are intended to
enhance and promote the public integrity of the project.

In plain words, we are proud of palm, and we want these branding guidelines
and assets to be used freely in an open and positive way.

Basic Use Guidelines

	1.1 Capitalization:
	Palm is an
improper (or common) [https://en.wiktionary.org/wiki/common_noun#English]
noun, and should follow appropriate grammar rules. Most notably, palm is
spelled with a capital “P” (Palm) as the first word in a sentence,
and with a lowercase “p” (palm) otherwise.

Logo Usage

Palm Logos can be used anywhere palm software is incorporated or used
as part of a project or workflow, referenced, compared or combined. Basically,
if you are using or discussing palm software, we encourage you to use palm
logos as you see fit. Palm logos cannot be used for projects or as part of
media unrelated to palm - for example, please do not open a nightclub named
“Palm” and use our logo. If you are unsure if your use violates these
guidelines, drop us a line at data-analytics-team@palmetto.com and we will be
happy to advise.

Swag

We are excited that you are excited about palm! so feel free to create
t-shirts, hats, parade floats etc with the palm logo for personal or team use.
If you intend to sell palm-branded merchandise for profit, please drop us a
line at data-analytics-team@palmetto.com so we can discuss.

Logos

Usage of palm logos is subject to our branding guidelines.

Standard Color Scheme

[image: ../_images/logo.png]

png: 934W x 319H
|| png: 294W x 100H
|| svg

[image: ../_images/logo-stacked.png]

380W x 467H
|| 100W x 138H
|| svg

[image: ../_images/logo-subheader.png]

934W x 319H
|| 294W x 100H
|| svg

Dark Color Scheme (transparent)

[image: ../_images/logo-dark-example.jpg]

png: 934W x 319H
|| png: 294W x 100H
|| svg

[image: ../_images/logo-stacked-dark-example.jpg]

380W x 467H
|| 100W x 138H
|| svg

[image: ../_images/logo-subheader-dark-example.jpg]

934W x 319H
|| 294W x 100H
|| svg

White Color Scheme (transparent)

[image: ../_images/logo-white-example.jpg]

934W x 319H
|| png: 294W x 100H
|| svg

[image: ../_images/logo-stacked-white-example.jpg]

380W x 467H
|| 100W x 138H
|| svg

[image: ../_images/logo-subheader-white-example.jpg]

934W x 319H
|| 294W x 100H
|| svg

CONTRIBUTING

Contributions are welcome! Please see the `CONTRIBUTING.md`_ file for
details.

Development environment

To set up a development environment, you can use the provided
`Dockerfile`_ to build a Docker image. This image contains all the
dependencies needed to run the tests and build the documentation.

Pre-commit

This project uses pre-commit to run a set of checks before each
commit. To install the pre-commit hooks, run:

pre-commit install

Index

Write a plugin

Hello there, friend! Thank you in advance for your interest in writing a plugin for
Palm CLI! If you have questions or want to discuss your ideas, please feel free to
contact the Core team at <data-analytics-team@palmetto.com>

Getting started

Palm includes a command to generate a plugin skeleton. You can use it to get started.

	cd into an active project - this is necessary at the moment as palm commands
are not currently available outside of an initialized git repository.

	Run palm plugin new --name <plugin-name> and follow the prompts.

	Your new plugin skeleton is created and ready for you to add commands!

Installing your plugin during local development

When developing a new plugin, you will want to install your plugin
so that you can test it out. To do this, run the following command from
your plugin’s root directory:

python3 -m pip install .

Note: Due to the way plugins are used by palm, you will need to re-install
the plugin every time you want to test changes to the plugin

Creating a Plugin Config

If you want to make your plugin configurable, you will need to create a plugin
config object and provide it to the plugin constructor.

The plugin config object:
- must be a subclass of palm.plugins.base_plugin_config.BasePluginConfig
- must define a set method which returns a dictionary of config values
- must be initialized with a model object, using the pydantic BaseModel,

which defines the config schema and will be used to validate the config values.

Here is an example of a plugin config object and how to use it in a plugin:

import click
from palm.plugins.base import BasePlugin
from palm.plugins.base_plugin_config import BasePluginConfig
from pydantic import BaseModel

Define the config schema
class MyPluginConfigModel(BaseModel):
 my_config_value: str

Define the config object
class MyPluginConfig(BasePluginConfig):
 def __init__(self):
 super().__init__('my_plugin', MyPluginConfigModel)

 def set(self):
 return {
 "my_config_value": click.prompt("Please enter a value for my_config_value", type=str)
 }

Create the plugin, providing the config object
my_plugin = BasePlugin(name='my_plugin', config=MyPluginConfig())

Using Plugin Config values

To use the config values in your plugin’s commands, a plugin_config method
is provided on the environment object. This method takes the name of the plugin
and returns the config values for that plugin.

Here is an example of how to use the plugin config values in a plugin command:

@click.command()
@click.pass_obj
def my_command(environment):
 plugin_config = env.plugin_config('my_plugin')
 click.echo(f"my_config_value is {plugin_config.my_config_value}")

Examples

Onboarding

Setting up a new full-time employee for success is the most straightforward example
of how palm can immediately impact productivity.

Let’s say today is your first day as an Analytics Engineer for a shop that uses dbt.
Let’s also say this shop also uses palm, with the palm-dbt plugin.

Day one goes something like this:

	You install Docker, git, your text editor and palm

	You get all your secrets assigned and SSH set up with github

	You clone the working dbt repo and run palm from root. You see something like this:

$ palm
Commands:
run executes dbt run in the namespaced schema for your branch
cycle executes dbt run, test, run, test
cleanup cleans the local and removes all remote artifacts from testing in the data warehouse

compile, test etc.

	Using the gitflow naming pattern of <branch-type>/<ticket-key>/<description> you check out your first work ticket:

$ git checkout -b feature/DATA-204/fix-sales-column-name

	You run palm cycle as a baseline:

$ palm cycle
running command `dbt seed && dbt run --vars '{"exclude_ods_keys":"yes", "first_transfer": 20210901}'`
against schema `TEST.feature_data_204_fix_sales_column_name`
... dbt run details here
success. dbt completed with 96 models and 144 tests, run 2x each in 120 seconds.
cleaning up the remote target...
clean.

Your development work executes in a sophisticated environment with automated namespacing,
automated cleanup, and idempotency testing.

There was near-zero learning curve for you, no tribal knowledge transfer needed, and you were able to start adding value hours into your first day on the team.

Cross Platform

Palm is written in Python, giving you the interoperability of a higher level programming language,
and relies heavily on the docker and docker compose APIs to create OS-agnostic
development environments. Leveraging palm’s native run_in_docker commands, you can run the same code
on any system and get the same results.

Context Switching

Possibly the most powerful long-term impact of palm is the way it removes internal barriers between software workflows.
Let’s say you are a developer at a modern e-commerce platform. The ecom site is powered by Ruby on Rails. The highly-trafficked content site uses WordPress. Your virtual dressing room software is built on Rocket, and the whole of the infrastructure is managed by Terraform.
A new feature is rolling out that uses the virtual dressing room. First, you update the Rocket application to enable the feature. You start by reviewing your options (it’s been a minute since you have worked in this repo):

$ cd ~/Repos/virtual_dressing_room && palm
Commands:
launch launches the vdr as a request server (daemon)
request starts an interactive request terminal to to the local server
test runs all the non-destructive tests locally
launch-test runs tests that will destroy the UAT environment, should only be run before a deployment

Once the Rocket code is updated and merged, you launch the feature on the ecom site.

$ cd ~/Repos/ecommerce_site && palm up

You make your changes, testing with palm test. The same happens with the WordPress and your infra work.

Here is where it gets interesting!

You get a panicked call from the finance team.

It appears the only Data Engineer is on vacation and they forgot a CCPA request due today!
You quickly clone the data team’s ccpa_privacy repo, and do this:

$ cd ~/Repos/ccpa_privacy && palm
Commands:
delete deletes (or obfuscates) a user by email address. Enforces financial retention per our privacy policy.
report generates a right-of-portability report of the data we have on a user by email address. non-destructive.

$ palm report --help
 Generates a json report of all the found data relating to a given email address.

 Args: email-address: the email to look up

$ palm report dave@requestedprivacy.com
Generating report…
Report done. Saved to ~/Documents/privacy_report_123.json

When an organization adopts palm, moving from one codebase to another becomes fluid, and without hard context switches.
Developers can confidently pick up and start working with any code, anywhere in the organization - including code they have never seen before.

Palm & The Modern Work Dynamic

Consulting

Coming Soon!

Offshoring & Nearshoring

Coming Soon!

Gig Work - For the Organization

Coming Soon!

Gig Work - For the Gig Worker

Coming Soon!

Open Source Software

Coming Soon!

Wait. Why Do My CLIs need a CLI?

For a seasoned Engineer, the idea of wrapping public software interfaces in an
abstraction layer will probably set off some warning bells. Admittedly, at first
glance palm can appear to add unnecessary complexity and “magic” to an already
polished API. For example, bringing up a docker compose service stack:

via native docker compose
$ docker compose up -d
Creating network my-project… done

via palm
$ palm up
Creating network my-project… done

In this case, it is hard to see the argument for palm’s usefulness. But modern
software development rarely stays that simple for long. Let’s look at a real-world
use case where we want to run tests on the Django webapp portion of our monorepo.
In this case the stack is down and the needed port is allocated by an orphan container.

via native bash + docker compose
$ docker compose exec --rm --service-ports my_app /bin/bash -c “pytest webapp/tests/webapp”
ERROR: No such service: my_app

$ docker compose up -d
ERROR: Bind for 0.0.0.0:8080 failed: port is already allocated

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
I98ds8sd90gsd django1 /bin/bash 2 days ago running

$ docker kill I98ds8sd90gsd
I98ds8sd90gsd

$ docker compose up -d
Creating network my-project… done

$ docker compose exec --rm --service-ports my_app /bin/bash -c “pytest webapp/tests/webapp”
Running 84 tests via pytest…

same thing, via palm

$ palm test
Starting compose…
Unable to compose, stopping orphan container… Stopped.
Starting compose… Started.
Running 84 tests via pytest…

Suddenly, palm starts to make a lot of sense. The abstraction layer that palm
provides allows you to architect simplicity and consistency into your development
environments across languages, frameworks, and infrastructure designs. You decide
what each command does, designing the workflow interface for each repo. A simple
single-container Jekyll app, and a complex multi-cloud microservices ecosystem,
each implemented by different teams with completely different skills, can share
a common interface.

Palm Is Working Software

Through this work we have come to value…
Working software over comprehensive documentation

~ Agile Manifesto [https://agilemanifesto.org/#:~:text=processes%20and%20tools-,Working%20software,-over%20comprehensive%20documentation]

A core concept in quality programming is Self-documenting code [https://en.wikipedia.org/wiki/Self-documenting_code].
Most seasoned Engineers would cringe if they came across a function like this:

/* Function for determining customer balance.
 This function takes the current known balance,
 queries the bank api with the customer account,
 then if the api returns a new balance it applies it to… (etc etc)
*/
function customerBalance(custId){
 // awful code goes here
}

And yet, the first instinct when engineering a development environment is
often to generate reams of stagnant documentation!
For example, let’s say a team of Developers randomly suffer from this error:

$ docker compose up -d
ERROR: unable to read file app/conf: file does not exist or access denied

After hours of painful debugging, it is discovered that this is not a permission or mounting issue,
but that docker is actually out of memory.
The fix is to clean up the docker environment.
Convention is to add this find to the project Readme.md, like this:

#Readme.md

Troubleshooting
“ERROR: unable to read file app/conf: file does not exist or access denied” :
your docker environment may be out of memory. Start by running `docker rm -f $(docker ps -qa)` …

But what if, instead of writing docs - docs the Developers will likely forget to check,
with steps that will need to be methodically replicated -
what if the fix was automated? Enter palm.

#.palm/cmd_up.py

@click.pass_obj
def cmd_up(environment):
 “”” starts the compose stack”””
 echo(“Starting docker stack…”)
 exit_code, out, err = environment.docker_up(capture_output=True)
 cryptic_message_indicating_no_memory = “ERROR: unable to read file app/conf: file does not exist or access denied”
 if cryptic_message_indicating_no_memory in err:
 red_echo(“Docker may be out of memory, cleaning up first…”)
 environment.docker_full_clean()
 environment.docker_up(bubble_error=True)
 green_echo(“Docker stack started.”)

Now and forever, your developers will see this when they run out of memory:

$ palm up
Starting docker stack…
Docker may be out of memory, cleaning up first...
Docker stack started.

Of course this solution is very basic. In a real implementation we might want to
check that the file exists and has the correct permissions, prompt the developer before nuking the docker environment etc.

As Engineers, we preach the value of automation and scoff at repetitive, error-prone manual tasks.
Palm is a way for us to practice what we preach.

 _images/logo-stacked-white-example.jpg

_images/logo-stacked.png
PALM

_images/logo-dark-example.jpg

_images/logo-stacked-dark-example.jpg

_images/logo-subheader.png
rrrrrrr

_images/logo-white-example.jpg

_images/logo-subheader-dark-example.jpg

_images/logo-subheader-white-example.jpg

_images/logo.png
EQA PALM

nav.xhtml

 Table of Contents

 		
 Palm CLI Documentation

 		
 Usage

 		
 System Requirements

 		
 Installation

 		
 Configuration

 		
 Shell Completion

 		
 High-level Features

 		
 Run in docker

 		
 Local commands

 		
 Code generation

 		
 Plugins

 		
 Commands

 		
 Where do commands come from?

 		
 Overriding commands

 		
 Excluding commands from your project

 		
 Command Groups

 		
 Writing your own commands

 		
 Conventions

 		
 Command Syntax

 		
 Common patterns and important notes

 		
 Code generation

 		
 Basics

 		
 Template config

 		
 Gotchas

 		
 New Projects with Cookiecutter

 		
 Default cookiecutter templates

 		
 Plugins

 		
 Core plugins

 		
 Installing Plugins

 		
 Configuring Plugins

 		
 Configuring Global Plugins

 		
 Using plugin commands

 		
 Keeping up to date

 		
 Writing your own plugins

 		
 Plugin config

 		
 Containerization

 		
 How to containerize your project

 		
 How containerization works

 		
 Implement your own containerization solution

 		
 Branding

 		
 Brand Assets

 		
 Logos

 		
 Basic Use Guidelines

 		
 Logo Usage

 		
 Swag

 		
 CONTRIBUTING

 		
 Development environment

 		
 Pre-commit

_static/minus.png

_static/plus.png

_static/file.png

_static/img/png/logo-stacked-dark.png

_static/img/png/logo-stacked-white.png

_static/img/png/logo-dark.png

_static/img/png/logo-stacked.png
PALM

_static/img/png/logo-subheader-dark.png

_static/img/png/logo-subheader-white.png
i

_static/img/png/logo.png
PALM

_static/img/png_large/logo-dark-example.jpg

_static/img/png/logo-subheader.png
rrrrrrr

_static/img/png/logo-white.png
i

_static/img/png_large/logo-stacked-dark.png

_static/img/png_large/logo-stacked-white-example.jpg

_static/img/png_large/logo-dark.png

_static/img/png_large/logo-stacked-dark-example.jpg

_static/img/png_large/logo-stacked.png
PALM

_static/img/png_large/logo-subheader-dark-example.jpg

_static/img/png_large/logo-stacked-white.png

_static/img/png_large/logo-subheader-white.png

_static/img/png_large/logo-subheader.png
rrrrrrr

_static/img/png_large/logo-subheader-dark.png

_static/img/png_large/logo-subheader-white-example.jpg

_static/img/png_large/logo.png
EQA PALM

_static/img/png_large/logo-white-example.jpg

_static/img/png_large/logo-white.png

